призма АВСДА1В1С1Д1, в основании квадрат АВСД, АВ=ВС=СД=АД=2, АС1-диагональ призмы, уголС1АС=45, АС=корень(2*АД в квадрате)=корень(2*4)=2*корень2,
Смотрите:
Косинус острого угла прямоугольного треугольника - это отношение <u>прилежащего </u>катета к <u>гипотенузе</u>. ⇒
0,2 - две десятых, значит, это отношение 2 к 10 - прилежащего катета к гипотенузе.
Значит, прилежащий катет равен 2 единичным отрезкам, а гипотенуза - 10 единичным отрезкам.
<em>Чертёж на картинке. </em>
Отметь как лучший. Так как угол ОВА= углу ВАО=45° , а угол ВОА=90°, то ВО=ОА=√((8√6)²/2)=√((64*6)/2)=√(32*6)=√(16*12)=√(16*4*3)=4*2√3=8√3
Так как ОАС=30°, то ОС=½АС. примем ОС за х, а АС за 2х. По теореме катетов а²+в²=с²
получаем:
((8√3)²+х²)=(2х)²
(64*3+х²)=4х²
192+х²=4х²
3х²=192
х²=192:3
х²=64
х=±8
Так как сторона не может быть отрицательной, то х=8.
Мы принимали ОС за х. Значит ОС=8.
Ответ:8
Так как прямые,проведенные из основания треугольника АВС параллельны его сторонам,то углы в треугольниках АFD и BDE равны углам треугольника АВС.Треугольники подобны,соответственно,они равнобедренные.Противоположные стороны параллелограмма FCED попарно равны,значит.
PFCED=2(FD+DE)=2(AF+FC)=20
Ответ:20